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Abstract

Whereas the internal fragment topological index (IFTD) is calculated in the
normal manner as for any molecule, the external fragment topological index (EFTD
is calculated so as to reflect the interaction between the excised fragment Fand the
remainder of the molecule (G — F). For selected topological indices (Tls), a survey
of EFTI values, formulas and examples is presented. Some requirements as to the
fragment indices are formulated and examined. In the discussion of the results, it is
shown that for some TIs regularities exist in the dependence of EFTI values upon
the branching of fragment F, or upon the marginal versus central position of the
fragment £ in the graph G. New vertex invariants can be computed as EFTI values
for one-atom fragments over all graph vertices; by iteration, it is in principle
possible to devise an infinite number of new vertex invariants.

© 1.C. Baltzer AG, Scientific Publishing Company



348 0. Mekenyan et al., Topological indices for molecular fragments

Abbreviations and notation

ay - entries (Kronecker delta) in 4

A - adjacency matrix

dl.j — topological distance between vertices 7 and /, entries in D
D — distance matrix

ej — number of edges adjacent to edge {ij}

EA — cdge adjacency, EA = N,

EFTI - external fragment topological index

F ~ fragment

FTI - fragment topological index

G graph

HOC -~ hierarchically ordered extended connectivities
IFTI - internal fragment topological index

184, 15 Ieury Torn 17, ]x -~ information theoretic indices (see text)
Lifh — edge between vertices /,/

J ~ average distance sum connectivity T]

M, ~ Zagreb group Ti

IM;  — sumof S, values

M topological index based on HOC vertex labels, ZM;

N, — topological index proposed by Gordon and Scantlebury
N - topological index based on HOC vertex labels, EMI?

NEFTI - normalized external fragment TI
NIFTI — normalized internal fragment TI

np' - number of vertices in ¢ and F, respectively
q — number of edges in the graph

0 - quadratic TI

$; - distance sum for vertex i

S; - sum of HOC vertex labels up to vertex I

Tl - topological index

V; - degree of vertex 7

VA  — vertex adjacency

W — Wiener’s Tl (half the sum of all entriesin D)
Z - Hosoya’s Tl

'y — Randi¢’s TI, molecular connectivity TI

j:)( - generalized molecular connectivity Tl

xv - valence connectivity TI
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1. Introduction

Topological indices (Tls) are numbers associated with molecular structures
which serve for quantitative relationships between chemical structure and properties.
The first such index was published by Wiener [1], but the name topological index
was invented by Hosoya [2]. A very successful TI, the molecular connectivity, was
devised by Randic¢ [3]. A drawback of TIs is their degeneracy, i.c. the fact that two
or more TIs can have the same value. In the search for Tls with lower degeneracy,
information theory was applied by Bonchev and Trinajstic [4] and indices with low
degeneracy were proposed by Balaban [S] and Randic [6]. Several reviews of
topological indices are available [3—14]. In some cases, especially for drug design,
it is desirable to characterize topologically a fragment of a molecule. Until now, this
was done by applying to fragments some of the general procedures used for whole
molecules, without paying special attention to the interaction between the fragment(s)
and the remainder of the molecule. It is known that such interactions can have
important consequences, e.g. hydroxy groups are strongly influenced by the group
to which they are bonded: NO, , Hal, H, Alk, Ar, RCO, etc.

2. Mathematical formalism

In practice, topological indices are derived by certain procedures starting from
the hydrogen-depleted graphs representing the skeleton of organic molecules. Let G
be such a molecular graph having p vertices symbolizing non-hydrogen atoms, and
let F be a subgraph (fragment) with p’ vertices (1 < p' < p). In the following, we
shall abbreviate Fragment Topological Index as FTI.

A few more graph-theoretical definitions and the corresponding notation
are necessary. The number of graph edges (symbolizing covalent bonds) will be denoted
by q. If v; edges meet in vertex i of a graph, the vertex is said to have degree v;. The
adjacency matrix A of a graph is a p x p symmetrical square matrix with entries a;;
equal to 1 if two vertices / and j are adjacent, and zero otherwise. The topological
distance between two vertices 7 and j is the number of edges between these vertices
along the shortest path between them. The distance matrix D of a graphisa p xp
symmetrical square matrix with entries d;; equal to topological distances between
vertices i and j. On adding all entries on row i of 4 one obtains v; . the vertex degree;
on adding all entries on row i of D one obtains another graph invariant, the distance
sum S;.

Several problems arise in connection with devising topological indices for
molecular fragments. The first problem is to characterize the fragment in all its
topological (constitutional) detail. Thus, if one treats a fragment like a molecule, one
cannot differentiate between n-butyl and s-butyl groups, or between n-propyl and
isopropyl groups. This problem may be solved by having recourse to rooted graphs:
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the root (to be differentiated numerically) corresponds to the point of attachment
of a univalent molecular fragment [15]. In some other cases, however, one may be
interested in fragments having several points of attachment.

The second problem is to consider the interaction between fragments and the
remainder of the molecule. In this respect, one has to consider two types of topological
indices for molecular fragments:

(i) Indices which consider only the atoms and bonds belonging to the fragment,
i.e. the internal fragment topology; we shall call such indices “internal” FTIs, IFTI,
or intra-indices.

(i1) Indices which describe a fragment in connection with the remainder of
the molecule; we shall call such indices “external FTIs"”, EFTI. or inter-indices.

A requirement as to the IFTI range of values for both the fragment F and the
remainder of the molecule G — F may be assumed:

0 < IFTI(F) < TI(G) (1)
0

< [FTI(G - F) < TI(G),

where TI may denote those out of the hundred odd topological indices described
so far which increase with the increase in the number of graph vertices p. The lower
bound is reached for one-vertex tragments.

In the next section, it will be shown that the majority of known indices meets
requirments (1). This is not, however, the case for the information theoretic indices
IiE based on the equivalence of different graph elements or characteristics [4], for
which some IFTI (F) or IFTI (G — F) are larger than the respective TI for the whole
graph. The Balaban index J [5] disobeys condition (1) for another reason. It is
not an increasing function of p, and hence the reverse inequality IFTI (F) > TI(G)
occurring for J does not prevent the applicability of this fragment index.

Related to point (ii), the external fragment topological indices EFTI (F') are
specified as the difference in value between the topological index for the whole
graph and the internal fragment indices for both the fragment and the remainder of
the molecule:

EFTI(F) = TI(G) — [IFTI(F) + » IFTI(G = F),]. (2)
k

Here, the sum incorporates as many terms as the number of (G — F') dis-
connected components. Indeed, there will be only one term when (G — F) is a con-
nected graph.

The idea of EFTI-indices may best be illustrated by those topological indices
which are based on the adjacency matrix (vertex and edge adjacency, Zagreb index,
molecular connectivity, etc.) or the distance matrix of the molecular graph (Wiener
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Fig. 1. A scheme for a topological matrix (adjacency or
distance matrix) ofa graph G with p vertices, from which
a fragment F with p’ vertices is selected. Two cases are
considered, in which the remainder of the molecule is:
(a) connected, (b) disconnected graph.

index, information index on the distance magnitude, etc.). As shown in fig. 1, these
are p x p symmetrical matrices. If the fragment F has p' vertices, the IFTI (F)is
defined by operations on the submatrix F, while the IFTI(G — F )issimilarly specified
on the submatrix (G — F) having p — p' vertices. The EFTI-indices are defined by
operations on the hatched portions of the matrix. Two cases occur in calculating
EFTIs, depending on whether the remainder of molecule G — F is a connected graph
(fig. la) or whether it is a disconnected one (fig. 1b). In the first case, EFTI describes
the interrelation between F and G — F (adjacency and distances between vertices
from the two parts of the graph). When (G — F') comprises two or more disjoint
subgraphs, the interaction between these subgraphs (the additional hatched portions
in fig. 1b) is not taken into account in specifying IFTI (G — F'), since they are con-
nected only by virtue of the fragment F. In dealing with adjacency matrix-based
IFTls, this interaction is zero (disjoint subgraphs), while the distance between the
vertices of (G ~ F), and (G — F'), is by definition infinity. Thus, according to eq. (2),
the EFTIs based on the distance matrix of G accounts also for the distances between
the vertices of (G — F'), and (G — F), in the initial connected graph G. Indeed,
eq. (2) covers also TIs which are not matrix-based, for example, the Hosoya index,
ie. all EFTIs are calculated by summing the IFTIs over all (G — F)-components,
despite the possibilities for some Tls and the (G — F'),-components to be treated in
a common scheme.

Now let the requirement as to the EFTI values be formulated similarly to (1):

EFTI(F) < TI(G). 3)
where again TI (G) is an increasing function of the number of graph vertices. The

lower bound of EFTI values is not specified for two reasons. EFTI (F) # 0 always
holds because there always exists some interrelation between F and G — F due to
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the graph connectedness. Hence, EFTI (£) > 0 should be expected for all TIs which
display additivity or, more generally, for which inequality (4) holds:

IFTL(F) + 2 IFTI(G - F), < TI1(G). (4)
k

This is the case with topological indices such as the Hosoya index, Zagreb index, HOC
index, Wiener index. etc.

The inverse inequality (4) could, however, also occur for some topological
indices, thus resulting in negative EFTI values. This is the case with the Randic index,
the information indices for the magnitude of the respective graph characteristics, etc.
Indeed, the negative EFTI values do not violate requirement (3) and can be used
for practical purposes. In applying Igl, 'x, J, and other indices having similar mathe-
matical formulation, one should take into account some more details. Thus, 'y and J
indices contain terms of the kind (x; xj)'l/z, x; being the vertex degree v; and the
vertex distance sum s;, respectively. With fragment removal, some terms disappear
(some bonds are cut), but some v; and all s; diminish, thus enlarging in value the
remaining terms. These two opposing trends usually prevent the regular behaviour
of these EFTIs. In the case of 'x, v; are small in value and the increase in the remain-
ing terms is larger, thus causing the appearance of positive, along with the negative,
EFTI values. In dealing with J, one almost always obtains negative EFTIs due to
larger s; values (i.e. smaller (sl.sj)'l/2 terms). Similar difficulties may arise with
lgl , where again two opposing trends may appear.

Another general criterion for the applicability of the fragment topological
indices may be formulated proceeding from the idea that the FTI should reflect
the structure topology in the same manner as the topological index of the whole
structure does. More, specifically | if

TH(G,) > TI{(G,).
then

EFTI(F C G,) > EFTI(F C G,) (5)

should hold when keeping constant the remaining factors: the fragment centric loca-
tion, the (G — F') branching and cyclicity, etc. This requirement will be discussed
in detail in sect. 4.

The fragment topological indices may be normalized by dividing them by
TI(G):

NIFTI (F)

IFTI (F)/TI(G) 6)

1l

NEFTI(F) = EFTI(F)/TI(G)

Here, N is added in the beginning of the abbreviations, denoting Normalized.
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Since the fragment F can be as small as a one-atom (non-hydrogen) fragment,
in which case most of the internal indices are equal to zero, we have:

0 < NIFTI(F) < I, (7)

as it will be illustrated in the next two sections.
A similar range

0 < NEFTI(F) < 1 (8)

can be specified for those indices which obey inequality (4}, while the lower bound
is —1 for the indices obeying the reversed inequality (4):

-1 < NEFTI(F) < 1. 9)

Topological indices which are not a continuous increasing function of the
number of graph vertices could have NEFTI values out of this range, as is the case with
the Balaban index J (see table 3).

One should note that IFTI (F) is a constant for a given fragment of any
molecule, whereas NIFTI () depends on the whole molecule. On the other hand,
both EFTI (F) and NEFTI (F) depend upon the molecule as a whole in a more
subtle fashion, whose analysis is the main object of the present paper.

In the following section, we show how to calculate these indices, both with
general formulas and with selected examples.

3. Selected fragment topological indices

Three examples are chosen to illustrate how the fragment topological indices
are to be calculated: an acyclic graph 1 (2,3, 4-trimethylpentane), a monocyclic
graph 2 (2-sec-butylcyclohexane), and a tricyclic graph 3 (perhydroantracene), as
shown in fig. 2. We shall include only certain topological indices, omitting others.
One such omitted TI is the largest eigenvalue because possible disconnected frag-
ments in ¢ — F have no clearly defined such TI. Other topological indices will be
shown to violate some of the requirements given in sect. 2.

3.1. VERTEX ADJACENCY (VA) FRAGMENT Tis {11,16]

VAIFTI(F) = 5 2. a;: VAIFTI(G-F) = % ay;
ifEF je{G-F}
(10)
1
jer ije{G-F}
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Fig. 2 (continued)
Block 3
3

123456 7891011 12 13 14 123456 78910111212 14
1101 I 1 1101232113454 1 2 3 2
21101 2110123212343 2 3 4 3
3 101 1 3121012311232 3 4 5 4
4 101 1 4132101212321 4 5 4 3
5 101 5123210113432 3 4 3 2
611 10 1 6112321014543 2 3 21
7 1 01 713212341012 314 5 6 5
8 101 81432345101 215 6 7 6
9 101 915432341210 116 7 6 5
10 1 10 10/432123)]32101]5 6 5 4
1111 0 1 11]1234321456 5/0 1 2 3
12 1 0 1 1212345431567 6|1 0 1 2
13 1 0 1 1313454321676 512 1 0 1
14 1 1 0 1412343211565 413 2 1 0

[ig. 2. The three graphs to exemplify the selected Tls and their adjacency and distance matrices.

where VA (G) stands for the sum of entries in the adjacency matrix of graph G, and
where Ny, denotes the number of the fragment cut edges.

3.2.

In the three examples: -

VA (G1) = 7,VA.IFTI(F1)=2; VAIFTI(Gl — F1)=4; VAEFTIL(F1)=1;

VA (G2) =10, VAIFTI (F2) = 3; VA.IFTI(G2 — F2) = 6; VA.EFTI(F2) = 1;

VA (G3) =16, VA.IFTI (F3) = 6; VA.IFTI(G3 — F3) = 6; VA.EFTI (F3) = 4.

ZAGREB INDEX (M), FRAGMENT TIs [17]

M,IFTI(F) = 2. v?; M, IFTL(G-F) = 2.

i€ F

zE{G—F}

(11)
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Here, the vertex degrees refer to subgraphs after cutting the cut edges.

M, EFTL(F)=M,(G)~ 2 w2 - 2 v}
ieF i€ |G -F}
=2 2 @iy (12)

liife {rele ¢

where {ij} € {fce} denotes the endpoints of fragment cut edges and the final expression
refers to the degrees of these vertices in the whole graph (before cutting).
In the three examples,

M IFTH(F1) = 12 +17 +2% = 6: M . IFTI(G1 = F1) = 3.1* +3% + 2% = 16;

M (G1)=5.1% +3.3% = 34; M, .EFTI(F1) = 10;

M, IFTI (F2) = 222 +2.1% =10; M, .IFTI(G2 — F2) = 6.2% = 24;

M,(G2) =627 +2.3% +2.1% =44; M, EFTI (F2) = 10;

M, IFTI (F3) = 62% = 24; M, IFTI(G3 - F3) =2(2.1% +2.2%) = 20;
M,(G3) =102 +4.3% = 76; M, .EFTI(F3) = 32.

Closely related to the Zagreb index are two other Tls, namely the Gordon —
Scantlebury index N, [18] and the quadratic index Q [19]. The following relation-
ships exist between these TIs for acyclic graphs:

Q=N,-p+2; M, =2(N, +p - 1). (13)

Since Q and N, depend linearly on N, and on the number p of vertices in
the graph, we do not present these two Tls in detail.

3.3. MOLECULAR CONNECTIVITY ('x, RANDIC INDEX [13] FRAGMENT TIs

XAFTL(F) = 2, ) 2 IFTIG = F) 2. () 1%

{iffeF lijlec-F ;
(14)
WEFTL(F)='%(G) = 2 Q)™ = 2 ()2,
{ijfeF {iite G -F)

In the final expression, the vertex degrees in 'x (G) refer to the whole graph,
before cutting off the fragment(s), whereas vertex degrees in F and G — F refer to
subgraphs after cutting. Therfore, a “simpler” expression of 'y .EFTI (F) is less
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easy is manipulate: it contains the sum of (uiv]-)‘l/2 terms for cut edge(s) and of
terms

% [(U,’Uk)_llz - Wy~ Uk)_lﬁ’ + (Ujvk)_l/z -y~ Uk)'.l/z] )
where I,/ are the endpoints of the cut edge and k is an adjacent point in F or in
G — F.with all vertex degrees referring to the whole graph.

For the three examples,

YWIFTI(F1) =2(1x2)" Y2 =14142; "W.IFTI(G1 —F1)=2(1x3)" 12

+ (1x2)y Y2 +@2x3)yY2=22700
'%(G1) = 3.5536; 'x.EFTI(F1)= -0.1306
W IFTI(F2) = 2(1x 2y Y2 + (2x2) 12 = 19142; 'x.IFTI (G2 - F2)
= 6(2x 2)" 12 =3.0000
'%(G2) = 48427, 'x.EFTI(F2)= —00715
I IFTI(F3) = 6(2x2)" % =300; 'x.IFTI (G3 — F3) = 2[2(1 x 2)" 112
+ 2x2)y1?] =38284
'x(G3) = 69327; 'x.EFTI(F3)=0.1043.

34, GENERALIZED CONNECTIVITY (9,20} (hx) FRAGMENT TIs

If instead of edges (paths of length one) in the Randic¢ index one takes into
account larger paths (length & = 2,3, etc.), one obtains by a formula similar to that
of the Randic index the generalized connectivity hy:

PNIFTL(FY = 2, (.. .0, ) P
(h)paths € F

"y IFTI (G - F) = > CATRURNS i (15)
(h)paths € (G - F)

"WEFTL(F) = "(G) = 2 (v -y, ,) '
(h)paths € F

- z (v,.vj...vhH)'l/z.
(h)paths € (G -F)
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35. VALENCE CONNECTIVITY [9,21] (hxu) FRAGMENT TIs

If, according to Kier and Hall, one employs in the previous cases the "atom
connectivity” A, defined according to the chemical nature of the atom including
its unshared electrons and its multiple bonding for edges (h = 1) or larger paths
(h > 1), instead of the vertex degree, one obtains the valence connectivity.

POIFTL(F) = 2 (ayay. . Ay, )P
(h)paths € FF

"'IFTL(G = F) = 2. ayan. oA, (16)
(h)paths € (G - F)

"YU EFTI(F) = " (G) - 2ooana oAy
(h)paths € F

- > (A A% oAy, )R
(h)paths € (G - F) !

36. EDGE ADJACENCIES [18] (EA, GORDON ~SCANTLEBURY INDEX) FRAGMENT TIs
EAIFTI(F) =1 20 ¢ EAIFTIG-F)=1 ¥ o an
' T ite G -F)

In the above expression, ¢;; indicates the number of edges adjacent to edge
{ij}in the subgraphs. The index EA is half the first neighbour sum and half the Platt
index [22]

EAEFTI(F) = 3| 2. €5~ 2 ¢— 2 ¢
{iite G lijfeF {ijte (G -F)
=2 2 (tu-2) (18)
{ij} = fee

For the three examples,

EAIFTI (F1)=2; EAIFTI (Gl -F1)=8; EAGl)= . e, =18,
{iitec
EA.EFTI(F1) = 8;

EA.IFTI (F2) = 4: EA.IFTI(G2 - F2)=12; EA(G2) = 24,
EA.EFTI (F2) = 8;
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EA.IFTI(F3)=12; EA.IFTI(G3 - F3)=8; EA(G3) = 44,
EA.EFTI (F3) = 24.

3.7. WIENER INDEX {1] (W) FRAGMENT TIs

WIFTI(F) = 5 2. dy: WIFTIG-F) =33 3 4,
= kK E(G-F)
WEFTI(F)=WG) -5 2 dy -3 9. o dy. (19)
HEF k jE(G-F)

in the above expressions. W(G) is half the sum of all entries in the distance
matrix D(G). Taking fig. 1 into consideration, it is evident that W.EFTI (F) is the
sum of entries in one hatched area of fig. 1a or in two such areas of fig. 1b. In fact,
it is the sum of topological distances (before fragmentation) between vertices of
subgraphs which may become disconnected on fragmentation. Another important
item to be noted is that when G — F is a disconnected graph, each IFTI (G — F ),
contains the distances between its own vertices, but the distances between vertices
belonging to disconnected (G — F), are not taken into consideration, since they
contribute to EFTI (F).

W.IFTI(F1) = 4; W.IFTI(Gl —F1) = 18; W(G1l) = 65;
W.EFTI (F1) = 43,

W.IFTI (F2) = 10; W.IFTI (G2 - F2) = 27; W(G2) = 121:
W.EFTI (F2) = 84,

W.IFTI (F3) = 27; W.IFTI(G3 - F3) = 20; W(G3) = 279;
W.EFTI (F3) = 232.

38. INFORMATION CONTENT FOR THE MAGNITUDE OF DISTANCES [4,10]
(fg’) FRAGMENT TlIs

In order to reduce the degeneracy of Tls obtained from graph invariants, one
may apply information theory to the set of numbers from which the TI is obtained,
taking into account the distribution of their magnitudes or their (in)equality; as is
known, the larger the inequality, the larger the information content according to the
Shannon formula. Bonchev and Trinajstic [4] first used information theory for the
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purpose of improving TIs based on the distance matrices. The information indices
for the magnitude of distances / lead to the fragment Tls:

i
IMIFTI(F) = - . — log, — :
IMIFTIG-F)=-3 3 & + log — . (20)

where each distance / and j within F or (G — F), respectively, occurs g; times,
M pprr ey = Mo i i J /o
IMEFTI(F) = 1] (G) +§: & o ¥ > > gy, logs ;-2
icF k 1E(G-—1‘)k

The amount of information is calculated in eqs. (20) and (21) in bits per unit
distance.

IMIFTH(FT) = 15; [Y IFTI(G1 - F1) = 3.1974
4{2x 1. 1x 2} 18{4x 1, 4x2, 2% 3}
IM(G1) = 4.6679: 1M EFTI(F2) = 4.6679 = 1.5 = 3.1974 = =0.0292
65{7x1.9x2. 8x3. 4x4|
IN IFTI(F2) = 2 4464; IMIFTI(G2 - F2) = 37821
10{3x 1, 2x2, 1x3} 27{6x 1, 6x 2. 3x 3}
IM(G2) = 5.3135; IM EFTI(F2) = =09150
D ‘Y- : ’ D - =7 ’
121{10x 1, 12x2, 11x 3, 7x4, 4x5, 1x6}
IMIFTI(F3) = 37821 INVIFTI(G3 = F3) = 4.8929
27{6x 1. 6x2, 3x 3} 108{6x1, 4x2,2%x3,2%x4, 6x5, 6x6, 2%x7}

IM(G3) = 63178; 1M EFTI(F3) = —2.3585

279{16x 1, 22x2, 21x 3, 14x4, 10x5, 6x6, 2x 7}
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3.9 HOSOYA INDEX [2] (2) FRAGMENT TIs

Hosova invented an interesting and useful T by summing the non-adjacency
number p(G, 1) for all [ values, where p(G2) is the number of ways in which / edges
may be chosen from the graph G so that no two of them are adjacent. By definition,
p(G.0)=1and p(G.1) = ¢, the number of graph edges.

ZIFTI( Zsz JAFTI( zzp(G F).0]

ZEFTI(F)= Z(G) - Z pE D =5 5 plG=F, 11 . (22)
k I

ZAFTI(Fl)y=1+2=3: ZIFTI(G1 —Fl)=1+4+2=7

Z(GHYy=1+T7+12+4 =24, Z.EFTIH(F1)=
ZIAFTI(F2) =

il

1+3+1=5; ZIFTI(G2 - F2)=1+6+9+2 =18
Z(G2)y=1+10+33 +42+18 +2 =106: Z.EFTI(F2)=283

ZAFTL(F3) =18; ZIFTIG3 - F3)=25=10
Z{G3)=1+16+95+290 +429 +294 +76 +4 = 1205; Z.EFTI(F3)=1177.

3.10 HIERARCHICALLY ORDERED EXTENDED CONNECTIVITIES (HOC) INDICES [23]
(HWAND N) FRAGMENT Tis

It was shown [23] that the HOC vertex ordering can be used for devising two
Tls, denoted by. i and .\, respectively. Both indices start from a unique vertex
numbering and result in a scquence of sums (S;) of vertex numbering (each vertex & is
labelled with the sum of vertex labels for its adjacent vertices except for vertices with
labels lower than k. These initial sequences of sums (the first line in the calculation
of each example) are then transformed following Muirhead [24] in their final form
(the second line in the three examples).

= ZS}.. M= 2 M. N= 2 ME (23)
j i

i

For the fragment topological indices i we have:
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i

AIFTI(F) = 2, My WIFTIG-F)= 20 3 M,

i€l k jE(G—F')k

MG -2 M- Y 2 M (24)

=y kK jE(G-F)y

i

ALEFTI (F)

On replacing M, in the above three formulas by Mf, we obtain analogously
the . FTls.

Block 5 Block 6
2 3
1& 4 !
7
3
5
9,11,15,0,0,0,0,0 5,0,0 9,5,0,0,0
9,20.35,35,35.35.35,35 5.5.5 9,14,14,14,14
WIFTI (F1) = 15; AIFTI(GL = F1) = 65
H(G1) = 239: M.EFTI(F1) = 159
NAFTI (F1y = 75; AAFTI (G — F1) = 865
AN(Gl) = 7831: N.EFTI(F1) = 6891

Block 8 Block 9
1 3
2 3 1
4 5 5 <
b 6

9,17.5,6,7,7,0,10,0,0 5,4,5,6,6,0 5,4,0,0
9,26,31.37,44,51,51,61,61,61 5,9.14.20,26.26 5.9.9.9
MAFTI(F2) = 32, MATFTI(G2 —~ F2) = 100
H(G2) = 432; M. EFTI(F2) = 300

NAFTI(F2) = 268: NIFTI (G2 - F2) = 2054
N(G2)y = 21388; N.EFTH(F2) = 19066
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Block 10 Block 11 Block 12 Block 13
1 3 3
2 3 m/‘) 1
4 6 2<L\D 2
5 4 A
14,14,18,16.0.0,11,12,13, 14, 5.4,5,6,6,0 5.4,0,0 5,4.0.0
12,0,14.0 5.9.14,20,26,26 5,9.9.9 5,9.9,9
14,28,46,62.62,62,73,85,98,
112,124,124 138,138
MAFTI(F3) = 100; MIAFTI(G3 ~F3)=2.32 = 64
M(G3) = 1166; ALEFTI(F3) = 1037
AAFTI(F3) = 2054, NATTI(G3 - F3)y = 2268 =536
NIG3) = 118170 NEFTI(F3) = 115580.

3.11.  AVERAGE DISTANCE SUM CONNECTIVITY {5,14,25,26] (BALABAN INDEX J)
FRAGMENT Tls

The index J results by applying a Randic-type formula to average distance
sums s;/q (instead of vertex degrees as for x), and by normalizing with respect to
the cyclomatic number u. For the present application. no normalization factor is
used because the number of graph edges ¢ and cycles u could undergo drastic changes
upon fragmentation.

JIFTI(F)y = 2, (s;s)7 M2 JIFTI(G - F) = 2. D (s;s)7'12

{ijle F k i} e (G -F)y
(25)
J.EFTI = Z (‘YiS]"—l/z _ z (Sisj)*'lﬂ - Z z (Sisi)-l/Q
{ite ¢ {ijte F k {ijte G -F)y

JIFTI(F1) = 2(2x 3y Y2 = 0.8165;
JIFTI(GL = F1) = 2(5x 8 Y2 + (5x6) % + (6x9)" 12 = 0.6349
J(G1) =4(13x 197 Y2 +2(13x 1) Y2 + (11 x 17)" 12 = 0.4949;

i}

JEFTH(F1) = —0.9565

1

JAFTL(F2) = 2(4x6)" Y2 + (4x 4y /2 =0.6582;
JIFTI(G2 — F2) = 6(9x 9)" /2 = 0.6661

J.EFTI(F2) = -08770
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J(G2)=2(1721) 1% +2(21.25)7 Y2 +2(25.29)7 12 +(17.19)" 12 +(19.25)"1/2
+ (1927 Y% +(25.33)° 1% = 04479

JAETI(F3)=6(9%9) 1?2 = 0.6667:

JAFTI(G3 = F3)=2[2(6x4) Y2 + (4% 4) /2] =1.3165

J(G3)=6(33.33)7M2 + 433 x41)" 12 +4(41.49)7 12 +2(49.49)" 1% = 04206

JEFTH(F3) = —1.5620.

3.12.  OTHER INFORMATION THLEORETIC [4.11,27] {Il-E) FRAGMENT Tls

Several information theoretic Tls have been defined on the basis of the
cquivalency {(equality) of graph distances (1{;), graph vertices according to their
chromatic (IE’HR), orbital U(%RB ), or centric ([g‘) partitioning, Hosoya’s non-
adjacency numbers (‘[;"). partial Randic connectivities (I%). ete.

In all cases, one applies Shannon-type formulas for the finite probability
schemes based on the respective distribution. as shown above for lgl.

In the following, we give a detailed example for the caleulation of 15 fragment
indices for the three examples, as well as the numerical results for five other /¥ -type
information indices. In all cases. the average values of these indices are presented (in
bits per vertex. edge distance. etc.).

IV AFTIH(FT) = 091830 [ IFTI(GT = F1) = 13788
3{1.21% 741.4.2}
IH(GT) = 1.6403: IS EFTL(F1) = —0.6568

24{1.7.12. 4}
[V OFTI(F2) = 137090 [JAFTI(G2 = F2) = 16122
S{1.3.1} 18{1.6,9,2}
I5(G2) = 1.9806: I EFTI(F2) = 10025
10511,10,33,42.18.2}
IS AFTI(F3) = 1.6122: 17 AFTI(G3 — F3) = 2.1.3709 = 27418

18{1,6,9.2} S{1,3.11 + 541,3,1}
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I¥(G3) = 2.1806; IT EFTI(F3) = —2.1732
1205{1,16.95,290,429,294,76, 4} .

The results obtained for some other information theoretic indices are given in
table 1.

Table 1
Five fragment information indices based on the equivalence (equality) of specified graph
characteristics
Index Graph IFTI(F) IFTI(G - F) TIH (&) EFTI(F)
Gl 0.9183 1.5219 1.9438 - 0.4964
I G2 1.4592 1.5219 23375 ~ 0.6435
G3 1.5219 29179 0.9663 - 3.4734
E Gl 0.9183 0.9709 0.9544 —0.9349
IR G2 L. 1. 1. - 1.
G3 1. 2. 1. — 2.
G1 0.9183 1.9219 1.7500 — 1.0902
ISrs G2 L. 0. 2.9219 1.9219
G3 0. 2 1.9502 —0.0498
Gl 0.9183 1.9219 0.9544 — 1.0902
& G2 L. 0. 2.9219 1.9219
G3 0. 2. 1.9502 —0.0498
. Gl 0. 1.5 0.8631 - 0.6369
ﬂ; G2 0.9183 0. 2.0464 1.1281
’ G3 0. 1.8355 1.4059 0.4873

[t can clearly be seen from all examples and tables 1-3 that fragment
topological indices obtained as indicated in the present paper evidence interesting
regularities.

4. Results and discussion

4.1. FURTHER NUMERICAL RESULTS

In addition to the illustrative examples given in the preceding section, we
selected a few FTIs and a few graphs to investigate the general behaviour of IFTI(F)
and EFTI (F) values, as well as their changes depending on two structural features:
branching and the more or less central position of the fragment in the molecule.
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Graph 4 is acychlic, graphs 52 — 67 are monocyclic and isomeric, differing in the
branching of the side chain. while the last two graphs (3 and 8) are again isomeric with
one another and differ in the mode of ring condensation (angular versus linear). The
position of the fragments in the molecule can differ, as indicated for 2,3, and 8.

Table 2 presents the topological indices for the whole initial graph G, for the
fragment F, and for the remainder of the molecule (G — F) for seven Tls. Table 3
indicates the fragment topological indices EFTI (F ) and the corresponding nornmalized
NIFTl and NEFTI indices.

42. INTERNAL FRAGMENT TOPOLOGICAL INDICES (IFFTT) AND NIFTI

It can be seen that one and the same {ragment has the same [FTI, irrespective
of the molecule from which it originates (e.g. IFTI values are the same for graphs 4,
5.and 2, or for graphs 6 and 7. or for graphs 3 and 8). On the other hand, different
isomeric fragments have different TFTI values, as shown by comparing fragments in
graphs 4, 5. and 2 with isomeric fragments in graphs 6 and 7.

The normalized NIFTI indices have different values for one and the same
fragment originating from different graphs; both the size and the shape of the whole
molecule influence the NIFTI value. Only when one and the same fragment is cut
out from the same molecule in different ways are the corresponding NIFTI values
equal, as shown by the three fragmentation modes of graphs 2, 3, and 8 (actually,
in these cases in table 3, the equal values are not repeated).

The examples given in subsect. 3.12 and table 1 provide another conclusion
which is important for the applicability of the fragment topological indices. The
fragment information indices based on equivalency (equality) of the graph elements
(characteristics) 1E do not obey requirement (1) formulated in the foregoing text.
As can be scen, for example. for gldp 1 3, all IFTI(G = F') values are larger than
those of the whok graph . Also, ICHR IFTI(F3) = [LHR (G). ete. Thus, any of
the information theoretic indices (]r IL I(ERB, lgHR, ]F 15, etc.) based on
equivalence relations of the dlstnbutlon Llements can be uscd as fragment topological
indices. Instead, the graph characteristics partitioning used in specifying the ]l.E indices
can be treated in a different manner, e.g. by means of a quadratic function, as is done.
for instance, for the graph centric indices [27]. This, however, seems unreasonable, at
least for some of these cases, since the centric, orbital, chromatic, etc. properties of
graphs are radically changed upon the fragment excision.

4.3 EXTERNAL FRAGMENT TOPOLOGICAL INDICES EFTI AND NEFTIL.
GENERAL REGULARITY ANALYSIS

Here we trace how the examined external fragment indices follow the seniority
relations occurring for the respective topological indices for the whole graph, as
formulated by requirement (5). This requirement appears important because the
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FTIs should reflect the fragment topology in the same manner as Tls do with the
topology of the entire graph. An inspection of table 3 shows that with very few
exceptions this is actually the case. The same trend in reflecting the graph and frag-
ment structural patterns is found for the Hosoya index Z, the Wiener index W, the
information index on the distance magnitude Igj, and the Balaban index J. For

example,

Graphs
5 2 6 7 3 8
Z((G) 114 > 106 96 > 80 1205 < 1230
Z.EFTI(F) 91 > 83 74 > 58 1177 < 1202

1149 < 1168

Indeed, the comparison is made at a constancy of the structural factors: the
fragment centric location, the (G — F) branching and cyclicity, etc. For this reason,
in the above examples we do not compare graphs 4 and 2 (or 5). since the first one
is acyclic when the second one is a cyclic graph. One exception to this rule is detected
for fragment 1 when comparing the HOC index or the Randic index of graphs 3 and 8.
These deviations are small and should not be regarded as evidence against the applica-
bility of the two fragment topological indices.

4.4, EFTI AND NEFTIINDICES AND MOLECULAR BRANCHING

By comparing EFTI (or NEFTI) indices for the graph series 5, 2, 6, 7, one
could obtain some information on the degree to which these fragment topological
indices reflect molecular branching as one of the major topological features of
molecules. Molecular branching has been a subject of intensive graph-theoretical
studies [2—14,17,18,28-33]. An attempt was made to express the essence of
branching by a series of structural rules based on the graph distances (the Wiener
number W) [4]. Most of these rules are reflected also by the Randic molecular con-
nectivity and the Hosoya non-adjacency index; the ordering of isomeric compounds
they provide was shown to be followed by many molecular properties [4,33]. In
dealing with isomeric structures 5, 2, 6 and 7, the different topological indices dis-
agree as to which of graphs 2 and 6 is more branched. They do, however, indicate in
full accord structure 5 as the least branched and structure 7 as the most branched.
Thus, the ordering § > 6,2 > 7 is produced by W, 'x,and Z, and the reverse order-
ing 5 < 6,2 < 7 results for Igl, J, N,and M,. Only some of the fragment indices
follow this order. These are the EFTI and NEFTI for the Wiener number, the Hosoya
index, and the HOC index. The Zagreb index M,. which is strongly degenerate,
deviates from the expected ordering, showing the EFTI values of § and 6 to be the
same, while the NEFTI values are even in a reversed order. The other three examined
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EFTIs completely disagree with the ordering observed for the respective Tls,
qualifying graph 6 as the least branched and graph 2 as the most branched one.
The JNEFTI and [gd NEFTI follow the same trend. some improvement being found
only for 'x .NEFTI. where structure 7 is restored as the most branched one.

The reason for the failure of J-, [g’ -, and 'x-type fragment indices to reflect
molecular branching correctly can be traced back to the mathematical functions used.
'x and J are sums of terms. The number of these terms diminishes by one for each
edge which is cut during fragment excision. The opposite influence on the magnitude
of these indices, however, results from the increasing values of all the remaining
terms, due to the decrease of the vertex degrees or distance sums which constitute the
terms denominator (sec eqs. (14) and (25)). The regularity in varying molecular
branching could thus be lost in the counterbalance of these two opposing trends.
On the other hand, ]g1 (G) enhances with branching and so does [II\)’I JFTI (F), which
is subtracted from [gl (G). Two opposing factors thus again emerge (the IFTI (G — F)
term is constant) which may causc violations to the regular trend dictated by molecular
branching.

45. LTI AND NEFTHINDICES AND THE FRAGMENT CENTRIC LOCATION

Another test for the qualities of these fragment topological indices could be
the comparison of their values in the case of different fragment locations in the
molecule. One may cxpect a regular change in EFTI and NEFTI values upon a con-
secutive fragment removal from a more central position. With this purpose in mind,
we compared fragmentations 1 -F3 of graph 2 and fragmentations F£1 and F2 of
graphs 3 and 8.

The anticipated regular increase in both EFTI and NEFTI indices was found
for the Hosoya, HOC, and Zagreb indices on removing the fragment from a marginal
to central position,i.c.in the series F1—~F2--F3 for 2 or F1- F2 for 3 and 8. This
increase is due mainly to the fact that a more central fragment is formed by breaking
more bonds, creating more endpoints in the fragment(s). The other topological indices
deviate more or less from the regular trend. Thus, one such deviation (underlined)
is found for the Wiener index (F2 —F1--F3) and its information-theoretic analog
]gl (F2—F1), as well as for the Balaban index J assuming a reverse fragment ordering
i.e.a decrease with the fragment in a more central position (F2 -~ F1-F3, F1-F2).
Once again, the Randi¢ molecular connectivity index completely fails to reproduce
the expected regular trend (F1 - F3-F2, F2--F1(G3), F1--F2(G8)).

5. New local (vertex) graph invariants: an infinity of new vertex
invariants based on EFTI

When considering a fragment of one non-hydrogen atom, the EFTI(1) value
reduces to
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EFTI(1) = TI(G) — IFTI(G') - a. (26)

where G’ is the vertex-excised graph, ie. the initial graph from which the given
vertex and its adjacent edges have been removed. ¢ stands for IFTI (F) and is zero
in the majority of cases or is a constant (e.g. @ = 1 for the Hosoya index Z ).

If one now moves the one-atom fragment along the graph, one obtains for
each vertex an EFTI(1l) value which is a vertex invariant based on the given TI. We
illustrate this by the W.EFTI(1) and M, .EFTI(1) values for the smallest identity
tree on seven vertices. [t is evident that these values vary consistently towards the
graph center.

27 36 1 10 12
42 29 4
" . 16 8
15
W.EFTI(]) M. EFTL(1)

On applying to the newly obtained vertex invariants iteratively the formula for
the same TI or for a different TI, and then on recalculating EFTI(1) for each vertex,
it is possible to devise an infinite number of vertex invariants. More details on this
subject will be given elsewhere [34].

6. Conclusions

We have presented a new method for calculating topological indices of
molecular fragments which takes into account the topological interaction between
the fragment and the remainder of the molecule by the EFTI values. Whenever these
interactions are unimportant, only the internal fragment topological index (IFTI)
should be considered; such an index is calculated according to the usual methods
employed for obtaining Tls of whole molecules. Of course, the corresponding NIFT]
reflects the relative weight of the fragment in the molecule, a useful fact in QSAR.
When, however, one wishes to emphasize the mode of attachment of the fragment,
one may also have recourse to graph-theoretical methods based on rooted graphs.

Some of the selected TIs are well suited for applications as fragment TIs,
having a regular variation with respect to structural changes such as branching, central
versus marginal location of the fragment, etc. These are the simpler Tls, such as
Z, N, W, or M. Other Tls, such as ]f)’l or J, respond only partly in a regular manner
to structural changes, while the Randic connectivity index 'y perhaps needs to be re-
normalized so as to become widely applicable as a fragment topological index. How-
ever, depending on the experimental data to be correlated with the structure, even
“irregularly " varying indices may be tested.
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In practice, most correlations do not involve hydrocarbons, but molecules
containing heteroatoms. In this case., one must parametrize graph constituents such
as vertices or edges, and one must employ weighted (labelled) graphs. Several papers
have described approaches to this end [9,26,35].

For fragments consisting of one non-hydrogen atom (Hal, NH,, OH, etc.) most
internal FTls are zero, leading to non-trivial difficulties. However, EFTI (F') values
differ from zero even for such fragments. Consequently. such EFTI values can some
times be used as local characteristics of molecules (local vertex invariants).
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