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Abstract 

Whereas tile internal fragment topological index (IFTI) is calculated in the 
normal manner as for any molecule, the external fragment topological index (EFTI) 
is calculated so as to reflect the interaction between the excised fragment F a n d  the 
remainder of tile molecule (G - F) .  For selected topological indices (TIs), a survey 
of  EFTI values, formulas and examples is presented. Some requirements as to the 
fragment indices arc formulated and examined. In the discussion of  the results, it is 
sho~n that for some Tis regularities exist in the dependence of EFTI values upon 
the branching of fragment F,  or upon the marginal versus central position of the 
fragment F in the graph G. New vertex invariants can be computed as EFTI values 
for one-atom fragments over all graph vertices; by iteration, it is in principle 
possible to devise an infinite number of new vertex invariants. 

cO J.C. Baltzer AG, Scientific Publishing Company 
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A b b r e v i a t i o n s  a n d  n o t a t i o n  
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average distance sum connectivity T1 
Zagreb group TI 
sum of S i values 
topological index based oil ttOC vertex labels, EM i 
topological index proposed by Gordon and Scantlebury 
topological index based on HOC vertex labels, EM[ 
normalized external fragment TI 
normalized internal fragment T1 
number of vertices in G and F, respectively 
number of edges in the graph 
quadratic TI 
distance sum for vertex i 
sum of [tO(2' vertex labels up to vertex i 
topological index 
degree of vertex i 
vertex adjacency 
Wiener's TI (balk the sum of all entries in D) 
Hosoya's TI 
Randid's TI, molecular connectivity TI 
generalized molecular connectivity T1 
valence connectivity TI 
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1. Introduction 

Topological indices (TIs) are numbers associated with molecular structures 
which serve for quantitative relationships between chemical structure and properties. 
The first such index was published by Wiener [1], but the name topological index 
was invented by Hosoya [2]. A very successful TI, the molecular connectivity, was 
de~dsed by Randid [3]. A drawback of Tls is their degeneracy, i.e. the fact that two 
or more TIs can have the same value. In the search for TIs with lower degeneracy, 
information theory was applied by Bonchev and Trinajstid [4] and indices with low 
degeneracy were proposed by Balaban [5] and Randid [6]. Several reviews of 
topological indices are available [ 3 - 1 4 ] .  In some cases, especially for drug design, 
it is desirable to characterize topologically a fragment of a molecule. Until now, this 
was done by applying to fragments some of the general procedures used for whole 
molecules, without paying special attention to the interaction between the fragment(s) 
and the remainder of the molecule. It is known that such interactions can have 
important consequences, e.g. hydroxy groups are strongly influenced by the group 
to which they are bonded: NO2, Hal, H, Alk, At, RCO, etc. 

2. M a t h e m a t i c a l  f o r m a l i s m  

In practice, topological indices are derived by certain procedures starting from 
the hydrogen-depleted graphs representing the skeleton of organic molecules. Let G 
be such a molecular graph having p vertices symbolizing non-hydrogen atoms, and 
let F be a subgraph (fragment) with p'  vertices (1 ~< p'  < p). In the following, we 
shall abbreviate Fragment Topological Index as FTI. 

A few more graph-theoretical definitions and the corresponding notation 
are necessary. The number of  graph edges (symbolizing covalent bonds)will be denoted 
by q. If v i edges meet in vertex i of a graph, the vertex is said to have degree v i. The 
adjacency matrix A of a graph is a p x p symmetrical square matrix with entries aq 
equal to 1 if two vertices i and / are adjacent, and zerootherwise. The topological 
distance between two vertices i and j is the number of edges between these vertices 
along the shortest path between them. The distance matrix D of a graph is a p x p 
symmetrical square matrix with entries dij equal to topological distances between 
vertices i and j. On adding all entries on row i of A one obtains v i the vertex degree; 
on adding all entries on row i of D one obtains another graph invariant, the distance 

sum S i . 
Several problems arise in ,connection with devising topological indices for 

molecular fragments. The first problem is to characterize the fragment in all its 
topological (constitutional) detail. Thus, if one treats a fragment like a molecule, one 
cannot differentiate between n-butyl and s-butyl groups, or between n-propyl and 
isopropyl groups. This problem may be solved by having recourse to rooted graphs: 
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the root (to be differentiated numerically) corresponds to the point of attachment 
of a univalent molecular fragment [15]. In some other cases, however, one may be 
interested in fragments having several points of attachment. 

The second problem is to consider the interaction between fragments and the 
remainder of the molecule. In this respect, one has to consider two types of topological 
indices for molecular fragments: 

(i) Indices which consider only the atoms and bonds belonging to the fragment, 
i.e. the internal fragment topology; we shall call such indices "internal" FTts, IFTI, 
or intra-indices. 

(ii) Indices which describe a fragment in connection with the remainder of 
the molecule; we shall call such indices "external FTIs", EFT1. or inter-indices. 

A requirement as to the 1FTI range of values for both the fragment Fand  the 
remain der of the molecule G - F may be assumed: 

0 ~< IFTI (F )  < TI (G) 

0 ~< IFTI ( G -  F )  < TI (G), 

(l) 

where TI may denote those out of the hundred odd topological indices described 
so far which increase with the increase in the number of graph vertices p. The lower 
bound is reached for one-vertex fragments. 

In the next section, it will be shown that the majority of known indices meets 
requirments (1). This is not, however, the case for the information theoretic indices 
I E based on the equivalence of different graph elements or characteristics [4], for 
which some IFTI ( F )  or IFTI (G - F )  are larger than the respective TI for the whole 
graph. The Balaban index J [5] disobeys condition (1) for another reason. It is 
not an increasing function of p, and hence the reverse inequality IFTI (F )  > TI (G) 
occurring for J does not prevent the applicability of this fragment index. 

Related to point OiL the external fragment topological indices F.FTI ( F )  are 
specified as the difference in value between the topological index for the whole 
graph and the internal fragment indices for both the fragment and the remainder of 
the molecule : 

E F T I ( F )  = TI (G)  - [ IFTI (F )  + ~ I F T I ( G - F ) k ] .  
k 

(2) 

Here, the sum incorporates as many terms as tile number of (G - F )  dis- 
connected components. Indeed, there will be only one term when (G - F )  is a con- 
nected graph. 

The idea of EFTI-indices may best be illustrated by those topological indices 
which are based on the adjacency matrix (vertex and edge adjacency, Zagreb index, 
molecular connectivity, etc.) or the distance matrix of the molecular graph (Wiener 
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G. 
G-F 

I P' P 

F 

a b 

Fig. 1. A scheme for a topological matr ix (adjacency or 
distance matr ix)  of  a graph G wi th  p vertices, from which 
a f ragment  F with p' vertices is selected. Two cases are 
considered,  in which the remainder  of the molecule is: 
(a) connec ted ,  (b) d isconnected  graph. 

index, information index on the distance magnitude, etc.). As shown in fig. 1, these 
are p x p symmetrical matrices. If the fragment F has p'  vertices, the IFTI ( F )  is 
defined by operations on the subnmtrix F, while the IFTI (G - F )is similarly specified 
oil the submatrix (G - F )  having p - I ) '  vertices. The EFTI-indices are defined by 
operations on the hatched portions of the matrix. Two cases occur in calculating 
EFTIs, depending on whether the remainder of molecule G - F is a connected graph 
(fig. la) or whether it is a disconnected one (fig. lb). In the first case, EFTI describes 
the interrelation between F and G - F  (adjacency and distances between vertices 
from the two parts of the graph). When ( G -  F )  comprises two or more disjoint 
subgraphs, the interaction between these subgraphs (the additional hatched portions 
in fig. lb) is not taken into account in specifying IFTI (G - F ) ,  since they are con- 
nected only by virtue of the fragment F. In dealing with adjacency matrix-based 
IFTls, this interaction is zero (disjoint subgraphs), while the distance between the 
vertices of (G - F)a  and (G - F)b  is by definition infinity. Thus, according to eq. (2), 
the EFTIs based on the distance matrix of G accounts also for the distances between 
the vertices of ( G - F )  a and ( G - F )  b in the initial connected graph G. Indeed, 
eq. (2) covers also TIs which are not matrix-based, for example, the Hosoya index, 
i.e. all EFTIs are calculated by summing the IFTIs over all ( G -  F)-components,  
despite the possibilities tBr some TIs and the (G -F )k -componen t s  to be treated in 
a common scheme. 

Now let the requirement as to the EFTI values be fornmlated similarly to (1): 

EFTI ( F )  < TI (G), (3) 

where again TI (G) is an increasing function of tile number of graph vertices. The 
lower bound of  EFTI values is not specified for two reasons. EFTI ( F )  :¢: 0 always 
holds because there always exists some interrelation between F and G - F  due to 
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the graph connectedness, tlence, EFTI (F )  > 0 should be expected for all TIs which 
display additivity or, more generally, for which inequality (4) holds: 

IFTI(IF) + Z I F T I { G - F )  k < TI(G).  (4) 
k 

This is the case with topological indices such as the Hosoya index, Zagreb index, HOC 
index, Wiener index, etc. 

The inverse inequality (4) could, however, also occur for some topological 
indices, thus resulting in negative EFTI values. This is the case with the Randid index, 
the information indices for the magnitude of the respective graph characteristics, etc. 
Indeed, the negative EFTI values do not violate requirement (3) and can be used 
for practical purposes. In applying I~) I , 1 X, J ,  and other indices having similar mathe- 
matical formulation, one should take into account some more details. Thus, 1X and J 
indices contain terms of the kind (x  i x j ) - x / 2 ,  xi  being the vertex degree v i and the 
vertex distance sum s i ,  respectively. With fragment removal, some terms disappear 
(some bonds are cut), but some o i and all s i diminish, thus enlarging in value the 
remaining terms. These two opposing trends usually prevent the regular behaviour 
of these EFTIs. In the case of i X, o i are small in value and the increase in the remain- 
ing terms is larger, thus causing the appearance of positive, along with the negative, 
EFTI values. In dealing with J, one almost always obtains negative EFTIs due to 
larger s i values (i.e. smaller ( s i s i ) - l / 2  terms). Similar difficulties may arise with 
I~ 1 , where again two opposing trends may appear. 

Another general criterion for the applicability of the fragment topological 
indices may be formulated proceeding from the idea that the FTI should reflect 
the structure topology in the same manner as the topological index of the whole 
structure does. More, specifically, if 

then 
TI(G~) > TI(G 2), 

E F T I ( F C  G~) > E F T I ( F C  G 2) (5) 

should hold when keeping constant the remaining factors: tile fragment centric loca- 
tion, the (G - F )  branching and cyclicity, etc. This requirement will be discussed 
in detail in sect. 4. 

The fragment topological indices may be normalized by dividing them by 
TI (a):  

NIFTI (F )  = IFTI (F)/TI (G) 

NEFTI ( F )  = EFTI (F)/TI (G) 
(6) 

Here, N is added in the beginning of the abbreviations, denoting Normalized. 
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Since the fragment F can be as small as a one-atom (non-hydrogen) fragment, 
in which case most of the internal indices are equal to zero, we have: 

0 ~< NIFTI (F)  < 1, (7) 

as it will be illustrated in the next two sections. 
A similar range 

0 < NEFTI (F)  < 1 (8) 

can be specified for those indices which obey inequality (4), while the lower bound 
is - 1 for the indices obeying the reversed inequality (4): 

-1  < NEFTI (F)  < 1. (9) 

Topological indices which are not a continuous increasing function of the 
number of graph vertices could have NEFTI values out of this range, as is the case with 
the Balaban index J (see table 3). 

One should note that 1FTI (F)  is a constant for a given fragment of any 
molecule, whereas NIFTI (F)  depends on the whole molecule. On the other hand, 
both EFTI (F)  and NEFTI (F)  depend upon the molecule as a whole in a more 
subtle fashion, whose analysis is the main object of the present paper. 

In the following section, we show how to calculate these indices, both with 
general formulas and with selected examples. 

3. Selected fragment topological indices 

Three examples are chosen to illustrate how the fragment topological indices 
are to be calculated: an acyclic graph 1 (2, 3, 4-trimethylpentane ), a monocyclic 
graph 2 (2-sec-butylcyclohexane), and a tricyclic graph 3 (perhydroantracene), as 
shown in fig. 2. We shall include only certain topological indices, omitting others. 
One such omitted TI is the largest eigenvalue because possible disconnected frag- 
ments in G - F  have no clearly defined such TI. Other topological indices will be 
shown to violate some of the requirements given in sect. 2. 

3.1. VERTEX ADJACENCY (VA) FRAGMENT TIs [11,16] 

1 Z 1 ~ " VA.IFTI (G - F )  : -~ a 6 ,  VA.IFTI (F)  = ~- a 6 ,  
ijEF ij~{G-F} 

1 [VA(G) - Z - Z a6] = Nfee VA.EFTI (F)  = -~ aij , 
ij~F ijE{G-F} J 

(lO) 
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Block 1 

1 

1 2 3 4 5 6 7 8 

0 1 
1 0 1 1 

1 0 
1 0 

1 

1 1 

0 

0 1 1 
1 0 
1 0 

1 2 3 4 5 6 7 8 

0 1 2 2 3 
1 0 1 1 2 
2 1 0 2 1 
2 1 2 0 3 
3 2 1 3 0 

3 2 1 3 2 
4 3 2 4 3 
4 3 2 4 3 

3 4 4 
2 3 3 
1 2 2 
3 4 4 
2 3 3 

0 1 1 
1 0 2 
1 2 0 

7 
8 
9 

10 

Block 2 

1 2 3 4 5 6 7 8 9 10 

0 1 1 
1 0 1 

1 0 1 
1 0 1 

1 0 1 
1 1 0 

0 1 
1 0 1 

1 0 
1 

1 
2 

3 
4 
5 
6 

7 
8 
9 

10 

F2 

1 2 3 4 5 6 7 8 9 10 

0 I 2 3 2 1 
1 0 1 2 3 2 
2 1 0 1 2 3 
3 2 1 0 1 2 
2 3 2 1 0 1 
1 2 3 2 1 0 

1 2 3 4 3 2 
2 3 4 5 4 3 
3 4 5 6 5 4 
2 3 4 5 4 3 

1 2 3 2 
2 3 4 3 
3 4 5 4 
4 5 6 5 
3 4 5 4 
2 3 4 3 

0 1 2 1 
1 0 1 2 
2 1 0 3 
1 2 3 0 

Fig. 2. 
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7 
8 
9 

10 

11 
12 
13 
14 

Fig. 2 (continued) 

Block 3 

1 9 

3 

1 2 3 4 5 6  

0 1  1 
1 0 1  

1 0 1  
1 0 1  

1 0 1  
1 1 0  

1 

1 

7 8 9 1 0 1 1 1 2 1 3 1 4  

1 

1 
1 

1 

0 1  

1 0 1  0 
1 0 1  

1 0  

0 1 
1 0 1 

1 0 
1 

7 
8 
9 

10 

11 
12 

1 13 
0 14 

1 2  

0 1  
1 0  
2 1  
3 2  
2 3  
1 2  

3 2  
4 3  
5 4  
4 3  

3 4 5 6  

2 3 2 1  
1 2 3 2  
0 1 2 3  
1 0 1 2  
2 1 0 1  
3 2 1 0  

1 2 3 4  
2 3 4 5  
3 2 3 4  
2 1 2 3  

1 2 3 4 3 2  
2 3 4 5 4 3  
3 4 5 4 3 2  
2 3 4 3 2 1  

7 8 9 10 ll  12 12 14 

3 4 5  4 1 2 3 2 
2 3 4 3  2 3 4 3 
1 2 3  2 3 4 5 4 
2 3 2  1 4 5 4 3 
3 4 3  2 3 4 3 2 
4 5 4  3 2 3 2 1 

1 2  3 4 5 6 5 
0 1  2 5 6 7 6 
1 0 1 6 7 6 5  
2 1 0 5 6 5 4  

5 6 5 0 1  2 3 
6 7 6  1 0 1 2 
7 6 5  2 1 0 1 
6 5 4  3 2 1 0 

Fig. 2. The three graphs to exemplif) the selected Tls and their adjacency and distance matrices. 

where VA (G) stands %r the stun of  entries in the adjacency matrix of  graph G, and 

where Nfc e denotes the Immber of  the fragment cut edges. 

In the three examples: " 

V A ( G 1 ) :  7 , V A . I F T I ( F 1 ) = 2 ;  V A . I F T I ( G 1  - F 1 )  = 4 ;  V A . E F T I ( F 1 )  = 1; 

VA (G2) = 10 ,VA. IFTI  (F2)  = 3; VA. IFTI  (G2 - F 2 )  = 6; VA.EFTI  (F2)  = 1; 

VA (G3) = 16 ,VA. IFTI  (F3)  - 6; VA.IFTI  (G3 - F 3 )  = 6; VA.EFTI ( F 3 )  = 4. 

3.2. ZAGREB INDEX (M1), FRAGMENT TIs [17] 

M , . I F T I ( F )  = Z v2 ; M I . I F T I ( G - F )  = Z o/2 
i ~ F  i~{O-F}  

(11) 
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Here, the vertex degrees refer to subgraphs after cutting tile cut edges. 

M 1 . E F T I ( F ) = M  l(G)- Z u? - Z u~ 
i ~ F  i ~ { G - F }  

= 2 ~_~ (u i + u / -  1), (12)  
{ij}~ {fee} E G 

whe re {i/} E {fce} denotes tile en dpoin ts of fragment cut edges and the final expression 
refers to the degrees of these vertices ill tile whole graph (before cutting). 

In the three examples, 

M l .IFTI (F1) = 12 + 12 + 22 : 6: 

MI(GI ) = 5.12 + 3.32 = 34; 

M 1.1FTI(F2) = 2,22 +2.12 = 10; 

MI(G2 ) = 6.22 +2.32 +2.12 = 44; 

M~ .IFTI (F3) = 6.22 = 24; 

MI(G3) = 1022 +4.32 = 76; 

M1.IFTI (G1 - F 1 )  = 3.12 +32 +22 = 16; 

M l .EFTI (F1) = 10; 

M 1 ,1FTI (G2 - F2)  = 6.22 = 24; 

M 1.EFTI (F2) = 10; 

3,11.IFTI (G3 - F3) = 2(2.12 + 2.22 ) = 20; 

3,11.EFTI (F3) = 32. 

Closely related to tile Zagreb index are two other TIs, namely the Gordon-  
Scantlebury index N 2 [18] and the quadratic index Q [19]. Tile following relation- 
ships exist between these TIs for acyclic graphs: 

Q = N 2 - p + 2 ;  M 1 = 2 ( N  2 + p -  1). (13) 

Since Q and N 2 depend linearly on N 2 and on tile ntunber p of vertices in 
tile graph, we do not present these two Tls ill detail. 

3.3. MOLECULAR CONNECTIVITY (1×, RAND1C INDEX [ 13] FRA.GMENT TIs 

1x . IFTI (F)  = Z (OiOj) -1[2" 1 x . I F T I ( G - F )  ~ (OiO])-l/2; 
{ i j } ~ F  { i j I ~ G - F  

I x . E F T I ( F ) =  1x(G ) - ~ (vivy)-U2 - Z (uivi)-U2. 
{ij} E F {i]} E (G - F)  

(141) 

In tile final expression, tile vertex degrees in 1 x (G) refer to the whole graph, 
before cutting off the t'ragment(s), whereas vertex degrees in F and G - F refer to 
subgraphs after cutting. Therfore, a "simpler" expression of 1x.EFTI (F )  is less 
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easy is manipulate it contains the sum o f  (OiOj) -1/2 terms for cut edge(s) and of 

terms 

Z [(vivk) -1/2 - (vivk - vk) -112 + (vjvk)  -1/2  - (v/vk - vk) -112] , 
k 

where i , /  are the endpoints of the cut edge and k is an adjacent point in F or in 
G - F, with all vertex degrees referring to the whole graph. 

For the three examples, 

xx . IFTI (F1)  = 2 ( 1 1 2 )  -1/2 = 1.4142; a x . I F T I ( G 1 - F 1 ) = 2 ( l x 3 ) - I / 2  

+ (1 1 2 )  -1/2 + ( 2 1  3) -1/2 = 2.2700 

1x(G1 ) = 3.5536; ax.EFTI (F1)  = -0 .1306  

ax.IFTI (F2)  = 2(1 x 2) -U2 + (21 2) -1/2 = 1.9142: ~x.IFTI (G2 - F 2 )  

= 6 ( 2  x 2 ) -  1/2 = 3 . 0 0 0 0  

ax(G2 ) = 4.8427" ax.EFTI (F2)  = -0 .0715 

~?(.IFTI (F3)  = 6(2 x 2) -1/2 = 3.00; xx.IFTI (G3 - F3)  = 212(1 x 2) -1/2 

+ (21 2) - l /z]  = 3.8284 

~x(G3) = 6.9327; ax.EFTI (F3) = 0.1043. 

3.4. GENERALIZED CONNECTIVITY [9,20] (hx) FRAGMENT TIs 

If instead of  edges (paths of length one) in the Randid index one takes into 
account larger paths (length h = 2 ,3 ,  etc.), one obtains by a fornmla similar to that 
of the Randid index the generalized connectivity h X • 

. + )-112 hx.IFTI(F) = Z (°iv/" "vh a 
(h)paths ~ F 

hx.IFTI (G - F )  = ~ (ViOl., .Oh+ 1) -1/2 (15) 
(h)paths E (G - F )  

hx.EFTI ( F )  = hx(G ) - ~ (vivi'" "vh+a)-l/z 
(h)paths E F 

- ~ .  (v i v : . .  .o h +1) -1 /2 .  
(h)paths ~ (G - F )  
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3,5. VALENCE CONNECTIVITY [9,21 ] (hxV) I :RAGMENT TIs 

If, according to Kier and Hall, one employs in the previous cases the "atom 
connectivity" A~, defined according to the chemical nature of the atom including 
its unshared electrons and its multiple bonding for edges (h = 1) or larger paths 
(h ~> 1 ), instead of the vertex degree, one obtains the valence connectivity. 

hXt~.IFTI(F) = Z (A'I 'A~.. .  Ate+,) - ' /2 
(h)paths E F 

t) • , )-i/2 hXv.IVTl (G - F )  = ~ (A~. A i A'j, +1 
(h)paths ~ (G - F )  

(16) 

= v , .  + ) - 1 / 2  hxV.EFTl (V) hxV(G ) - ~ (2x~ Aj 4 ,  , 

(h)paths ~/~" 

1, , ) -  1 / 2  

(h)paths ~ (G - F)  

3.6. EDGE ADJACENCIES [ 18 ] (EA, GORDON - SCANTLEBURY INDEX) FRAGMENT TIs 

1 1 Z EA.IFTI (G - F )  = 5 ~ cii. (17) EA.IFTI (F )  = -5 eij; 
- { i j } ~ F  - { i / ' } ~ ( G - / ; ' )  

In the above expression, eft indicates the number of edges adjacent to edge 
{if} in the subgraphs. The index EA is half the first neighbour sun1 and half the Platt 
index [22] 

1 EA,EFTI ( F )  = 5 eii - Z cij - Z ~'ij 
ij G { i]}~F { i j }~ (G-F ' )  

= 2 Z (ui + v I -  2). (18) 
{ij}~ fce 

For the three examples, 

EA.IFTI (F1) = 2; EA,IFT1 (G1 - F1)  = 8: EA(G1) = 
{ij}~ G 

EA.EFTI (F1) = 8; 

el~ = 18, 

EA.IFTI (F2) = 4- EA.IFTI (G2 - F2)  = 12; EA(G2) = 24, 

EA.EFTI (F2) = 8; 
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EA.IFTI (F3) = 12; EA.IFTI (G3 - F3) = 8; 

EA.EFTI (F3) = 24. 

EA(G3) = 44, 

3.7. WIENER INDEX [1] (W) I'RAGMENT TIs 

1 1 
W.IFTI(F)  = ~ ~ di/; W. IFTI (G-F)= -~ ~" Z dq 

i j ~ F  k i j E ( G - F ) k  

1 
W.EFTI ( F ) =  W(G) - 5 1 

Z di/ - 5 ~, Z dq. (19) 
i j ~ F  k i j E ( G - F ) k  

In the above expressions, W(G) is half the sum of all entries in the distance 
matrix D(G). Taking fig. 1 into consideration, it is evident that W.EFTI (F)  is the 
sum of entries in one hatched area of fig. la or in two such areas of fig. lb. in fact, 
it is tile sum of topological distances (before fragmentation) between vertices of 
subgraphs which may become disconnected on fragmentation. Another important 
item to be noted is that when G - F is a disconnected graph, each IFTI (G - F)k 
contains the distances between its own vertices, but the distances between vertices 
belonging to disconnected ( G - F )  k are not taken into consideration, since they 
contribute to EFT1 (F). 

W.IFTI(F1) = 4; W.IFTI(G1 - F 1 )  = 18; W(G1) = 65; 

W.EFTI (F1) = 43, 

W.IFT1 (F2) = 10; W.IFTI (G2 - F 2 )  = 27; W(G2) = 121- 

W.EFTI (F2) = 84, 

W.IFT1 (F3) = 27; W.IFTI (G3 - F 3 )  = 20; W(G3) = 279; 

W.EFTI (F3) = 232. 

3.8. INF'ORMATION CONTENT FOR THE MAGNITUDE OF DISTANCES [4,10] 
UD M) FRAGMENT Tls 

In order to reduce the degeneracy of TIs obtained from graph invariants, one 
may apply information theory to the set of numbers from which the TI is obtained, 
taking into account the distribution of their magnitudes or their (in)equality; as is 
known, tile larger ttle inequality, the larger the information content according to the 
Shannon formula. Bonchev and Trinajstid [4] first used information theory for the 
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purpose of improving TIs based on the distance matrices. The information indices 
for the magnitude of distances i lead to the fragment T ls  

M i i 
I D . I F T I ( F ) : -  ~ gi ~ l°g2 - - "  

i ~  x: I,¢ 

M ~ J (20) I D .IFT1 (G - F )  = - Z ~ g/ tog 2 i4-- 7 
k j ~ ( G - F )  k 

where each distance i and j within F or (G - F ) ,  respectively, occurs gi times, 

i M M 
I D . E F T I ( F )  =I  D (G) + Z gi -~ l°g2 

i ~ F  

i ] ] (21) + Z Z g;  og2 ;7  
k I C ( G - F )  k 

The amount of information is calculated in eqs. (20) and (21) in bits per unit 
distance. 

M I D .1FTI (F1)  = 1.5 

4{2x 1, 1× 2} 

M I D .IFTI (G1 - F1)  = 3.1974 

18{4x 1, 4 x 2 ,  2x3}  

I M ( G 1 )  = 4.6679: 
D 

65{7× 1, 9 x 2 ,  8 x 3 .  4×4}  

IDM .EFTI (F2)  = 4.6679 - 1.5 - 3.1974 = -0.,0"~9 ~- 

M [ D .IFTI (F2)  = 2.4464: 

1013x 1, 2 x 2 ,  l x 3 }  

IDM(G2) = 5.3135; 

M I D .IFTI (G2 - F2) = 3.782l 

27{6x 1, 6 x 2 ,  3x3}  

M.EFTI (F2)  = -0 .9150  I D 

121110x 1, 1 2 x 2 ,  l l x 3 ,  7 x 4 ,  4 x 5 ,  l x 6 }  

M M I D . IFTI (F3)  = 3 .7821 I D . I F T I ( G 3 - F 3 )  = 4.8929 

2 7 { 6 x l ,  6 x 2 ,  3x3}  1 0 8 { 6 x l , 4 x 2 ,  2 x 3 ,  2 × 4 ,  6 x 5  

I;~(G3) = 6.3178; I;~,EFTI (F3)  = -2 .3585 

279{16x 1, 2 2 x 2 ,  2 1 x 3 ,  1 4 x 4 ,  10×5 ,  6 x 6 ,  2x7}  

, 6 x 6 ,  2 x 7 /  



O. Mekenyan et al., Topological indices for molecular fragments 361 

3.9 HOSOYA INDEX [2] (z )  I:RAGMENT TIs 

Hosoya invented an interesting and useful TI by summing the non-adjacency 

number p(G, l) for all l values, where I)(G2) is the number of  ways in whicl~ l edges 
may be chosen from the graph G so that no two of  them are adjacent. By definition, 
p(G,O) = 1 and p(G, 1) = q, the number of" graph edges. 

Z . IFT I (F )  = Z / ) ( F , I ) :  Z. I F T I ( G - F )  = ~ ~_~ p [ ( C - F ) , l ]  
1 k 1 

Z . E F T I ( F )  = Z(G) - ~ p ( F ,  1) - ~ ~ p [ ( G - F ) k , l ]  . 
I k 1 

(22) 

Z . 1 F T I ( F 1 ) :  1 + 2  = 3  

Z ( G 1 ) =  1 +7  +12  + 4 :  24: 

Z . I F T I ( F 2 ) =  1 + 3  +1  = 5 :  

Z . I F T I ( G 1  - F 1 )  = 1 + 4 + 2  = 7  

Z ,EFTI  ( F 1 )  = 14 

Z . I F T I ( G 2 - F 2 )  = 1 + 6  + 9  + 2  = 18 

Z(G2)  = 1 + 10 + 33 + 42 + 18 + 2 = 106: Z .EFTI  ( F 2 )  = 83 

Z.1FTI (F3) 18: Z , IFTI  (G_ F 3 )  2.5 = 10 

Z(G3)= 1 + 1 6 + 9 5  + 2 9 0 + 4 2 9 + 2 9 4 + 7 6 + 4 =  1205; Z . E F T I ( F 3 )  = 1177. 

3.10 HIERARCHICALLY OI~,DER1 D EXTENDED CONNECTIVITIES (HOC) INDICES [231 
([1 AND.x) IVRAGMFNT Tls 

It was shown [23] that tile HOC vertex ordering can be used for devising two 
TIs, denoted by. If a n d . %  respectively. Both indices start from a unique vertex 
numbering and result in a sequence of  sums (S i )o f  vertex numbering (each vertex k is 
labelled with the sum of  vertex labels for its adjacent vertices except for vertices with 
labels lower than k. These initial sequences of  sums (the first line in the calculation 
of  each example) are then transformed following Muirhead [24] in their final form 
(the second line in the three examples). 

M,-- Z s . . . ,  = EM,. ,--  E M? t23  
1 i i 

For the fragment topological indices .hi we have: 
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.H.1FTI (F)  = ~ M i ..t,I.IFTI (G - F )  = ~ ~ M. ] 
i ~ I  r k jt~ ( G - F )  k 

< / ~ I . E F T I ( F )  = . H ( G ) -  ~ M i - ~ ~ Mj.  ( 2 4 )  
i~F  k je (G-F)k  

On r e p l a c i n g  M 1 in t he  a b o v e  th ree  f o r m u l a s  by  M ~ ,  we o b t a i n  a n a l o g o u s l y  

t h e ,  H. FTI s .  

Block 4 

5 7 

9 , 1 1 , 1 5 , 0 , 0 , 0 , 0 , 0  
9 ,20 ,  35 ,35 ,  3 5 , 3 5 , 3 5 , 3 5  

I f . IFTI  (F1)  = 15: 
I,f(Gl ) = 239: 
. \ , IFTI (F1)  = 75: 
\ ( G I )  = 78312 

Block 5 Block 6 

2 3 

] 2 
7 

5 

5 , 0 , 0  9 , 5 , 0 , 0 , 0  
5 , 5 , 5  9 ,14 ,  t 4 , 1 4 , 1 4  

I I . IFTI  (G1 -F1) = 65 
I1.EF'TI (F1) = 159 
. \ . IFTI  (G1 - F 1 )  = 865 
. \ .EFTI (F1)  = 6891 

Block 7 

7 ~ 8 ' ~  

6 

9 , 1 7 . 5 , 6 , 7 , 7 , 0 , 1 0 , 0  
9 ,26 ,  3 1 , 3 7 , 4 4 ,  51,51 

[,t.IFTI {F2) = 32; 
. ft(G2) = 432: 
A.1FTI (F2)  = 268: 
. \(G2) = 21388; 

0 
6 1 , 6 1 , 6 1  

Block 8 

1 

6 

5 , 4 , 5 , 6 , 6 , 0  
5 , 9 , 1 4 , 2 0 , 2 6 , 2 6  

fI.IFTI(G2 - F2 )  = 100 
A,I.I FTI (F2)  = 300 
A.IFTI (G2 - - F 2 )  = 2054 
\ .E1;TI  (F2)  = 19066 

Block 9 

2 4 

5 , 4 , 0 , 0  
5 , 9 , 9 , 9  
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Block 10 Block 11 Block 12 

7 5 9 1 3 

11 f f ~ ~ " ~ l  B 2 3 1 

8 ~ lO 5 ~* 

14,14, t8 ,16 ,0 ,0 ,11 ,12 ,13 ,14 ,  
12,0,14,0 
14,28,46,62,62,62,73,85,98,  
112,124,124,138,138 

5.4 5 6 ,6 ,0  5 ,4 ,0  0 
5 ,9 ,14 ,20 ,26 ,26  5 ,9 ,9 ,9  

{I.II:TI {F3) = 100; 
It{G3) = 1166; 
\ .II:TI {F3) = 2054; 
.\{G3) = 118170: 

II.II:TI (G3 - F3) = 2.32 = 64 
If.EI TI (F3) = 1037 
.\.I[:TI (G3 - F 3 )  = 2.268 = 536 
.V.EI:TI (F3) = 115580. 

Block 13 

3 

5 ,4 ,0 ,0  
5 ,9 ,9 ,9  

3.11. AVI:RAGE DISTANCE SLiM CONNECTIVITY [5,14,25,261 (BALABAN INDEX J) 
FP, AGMI- NT TIs 

Tile index ,I results by applying a Randid-type formula to average distance 

sums s i /q  (instead of  vertex degrees as for X), and by normalizing with respect to 

tile cyclomatic nmnber /~. For the present application, no normalization factor is 

used because the nunlber o f  graph edges q and cycles/ l  could undergo drastic changes 
upon fragmentation. 

] . I F T I ( F )  : )_~ (sisj)-l/2; J.IFTI (G - F )  = 

J.Et:Tl = Z (.~',s;) -1/2-  g (~. , ;)-1/2 Z 
{0}~ G { i j }~F k 

Z (siq)- 1/2 
{ij} ~ (G - F) k 

(25) 
Z (s, sj)- 1/2 

{q} ~ {G - F )  k 

J . I F T I ( F 1 )  = 2 ( 2 x 3 )  -1/2 = 0.8165; 

, ] . IFTI(G1 - F 1 )  = 2 ( 5 × 8 )  -U2 + ( 5 x 6 )  -1/2 + ( 6 x 9 )  -1/2 = 0.6349 

J (G1)  = 4(13× 19) -1/2 + 2 ( 1 3 x  11) -1/2 +(11 × 171-1/2 = 0.4949; 

J . E F T I ( F 1 )  = - 0 . 9 5 6 5  

J . 1 F T I ( F 2 )  = 2 ( 4 x 6 )  -1/2 + ( 4 x 4 )  -1/2 =0 .6582 ;  

J . IFTI  (G2 - F 2 )  -- 6(9 x 9) -1/2 =- 0.6661 

J .EFTI  (F2)  = - 0 . 8 7 7 0  
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,I(G2) = 2(17.21)-1/2 + 2(21.25)-1/2 + 2(25.29)-5/2 + (17.19)-5/2 + (19.25)-1/2 

+ (19.27) -5/2 +(25,33)  -1/2 =0.4479 

,/.IFTI (1;3) = 6(9x 9)  -1 /2  = 0.6667: 

J . IFTI ((73 - / : 3 )  = 2 [2(6 >~ 4) -1/2 + (4× 4) -1/2 ] = 1,3165 

J(G3) = 6(33.33) q/2 + 4(33 × 41 )-5/2 + 4 ( 4 1 . 4 9 ) - 1 / 2  + 2 ( 4 9 , 4 9 ) -  5/2 = 0.4206 

J .EFFI  (F3)  = - 1,5626. 

3.12. OTIIEP, INI:ORMATION THEORETIC [4,11,271 (]E) I:RAGMENT Tls 

Several information theoretic Tls have been defined on tile basis of  the 
equivalency (equality) of graph distances (ll~), graph vertices according to their 

/E IE chromatic(¢.::5H<), orbital (ORB),  or centric ([~:) partitioning, Hosoya's non- 
adjacency numbers (/E), partial Randic connectivities ([E), etc. 

In all cases, one applies Shannon-type formulas for the finite probability 
schemes based on the respective distribution, as shown above for I M 1) - 

In the following, we give a detailed example for the calculation of I~: fragnlent 
indices for the three examples, as well as the numerical results for five other I E-type 
information indices. In all cases, the average values of these indices arc presented (in 
bits per vertex, edge, distance, etc.). 

I:.IFTI (G1 1:1 ) = 1 .... oo I :.II:TI ( t : I )  = 0.9183: I z - 3 "7''~' 

311,2} 7 { t , 4 , 2 }  

~ '~ ~ V . E F T I ( F 1 )  = -0 .6568  ] (G1) = 1,o40_ : I z 

2411,7 ,  12,4} 

I::.IFTI (G2 - F2) = 1 61 '~ I~:.IFTI (F2)  = 1.3705): [ z . . . .  

5/1,3.1} lS11.6,c),2} 

1~ EFTI (F2)  = - 1.0025 I,~;(G2) = 1.9806: I z 

105 {1, 10 .33 ,42 ,  18.2} 

5.: ~ .  IFTI (G3 - 1:3 ) '~. 1 . .~70) 2 . 7 4 1 8  I Z . 1 F T I ( F 3 )  = 1.61~9 i z 

1 8 / 1 , 6 , 9 , 2 }  5{1 3,1} + 5{1 ,3 ,1}  
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E IzE.EFTI (F3) = - 9 2 1 7 3 2  I z (G3)  = 2 .1806 ;  

1205 { 1 , 1 6 , 9 5 , 2 9 0 , 4 2 9 , 2 9 4 ,  7 6 , 4 } .  

The results  o b t a i n e d  for some o t h e r  i n f o r m a t i o n  theore t i c  indices  are given in 

table  1. 

Table 1 

[rive fragment information indices based on the equivalence (equality) of specified graph 
characteristics 

Index Graph IFTI (F)  IFTI (G - F )  TI (G) EFTI (F)  

G1 0.9183 1.5219 1.9438 - 0.4964 
I ~  G2 1.4592 1.5219 2.3375 ...... 0.6435 

G3 1.5219 2.9179 0.9663 - 3.4734 

G 1 0.9183 0.9709 0.9544 -- 0.9349 
/I~HR G2 1. 1. 1. - 1. 

G3 1. 2. 1. - -2.  

G1 0.9183 1.9219 1.7500 - 1.0902 
I~RB G2 1. 0. 2.9219 1.9219 

G3 0. 2. 1.9502 - 0.0498 

G1 0.9183 1.9219 0.9544 - 1.0902 
ff G2 1. 0. 2.9219 1.9219 

G3 0. 2. 1.9502 - 0.0498 

G1 0. 1.5 0£631 - 0.6369 
[E G2 0.9183 0. 2.0464 1.1281 

x 
G3 0. 1.8355 1.4059 0.4873 

It can c lear ly  be seen f rom all e x a m p l e s  and tables  1 3  tha t  f ragment  

t opo log i ca l  indices  o b t a i n e d  as i nd i ca t ed  in tile p resen t  paper  evidence in te res t ing  

regular i t ies .  

4. Results and discussion 

4,1. FURTHER NUMERICAL RESULTS 

In a d d i t i o n  to  ti le i l lus t ra t ive  e x a m p l e s  given in the p reced ing  sec t ion ,  we 

se lec ted  a few FTIs  and a few graphs  to  invest igate  the  genera l  behav iou r  o f  I F T I ( F )  

and  EFT1 ( F )  values ,  as well as thei r  changes d e p e n d i n g  on two s t ruc tu ra l  fea tures :  

b r anch ing  and the more  or  less cen t ra l  pos i t ion  o f  the  f r agment  in the  molecu le .  
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Graph4 i s  acyc/ic, graphs5~-2 6 7 are monocyclic and isomeric, differing in the 
branching of the side chain, while the last two graphs (3 and 8) are again isomeric with 
one another and differ in the mode of ring condensation (angular versus linear). The 
position of the fragments in the molecule can differ, as indicated for 2, 3, and 8. 

Table 2 presents the topological indices for the whole initial graph G, for the 
fragment F, and for the remainder of the molecule (G - F )  for seven Tls. Table 3 
indicates the fragment topological indices EFTI ( F )  and the corresponding normalized 
NIFT1 and NEFTI indices. 

4.2. 1NTt;P, NAL VRAGMENT TOPOLOGICAL INDICES (IF]l) AND NII:TI 

It can be seen that one and the same fragment has tile same IFTI, irrespective 
of the molecule from which it originates (e.g. IFTI values are the same for graphs 4, 
5. and 2, or for graphs 6 and 7. or for graphs 3 and 8). On the other hand, different 
isomeric fragments have different IKTI values, as shown by comparing fragments in 
graphs 4, 5, and 2 with isomeric fragments in graphs 6 and 7. 

The norinalized NIFTI indices have dift\'rent values for one and the same 
fragment originating from different graphs; both the size and the shape of the whole 
molecule influence the NIKTI value. Only when one and the same fragment is cut 
out from the same molecule in different ways are the corresponding NIFTI values 
equal, as shown by the three fragmentation modes of graphs 2, 3, and 8 (actually, 
in these cases in table 3, the equal values are not repeated ). 

.~.1_ and table t provide another conclusion The examples given in subsect. ~ ~ 
which is important for the applicability of the fragment topological indices. The 
fragment information indices based on equivalency (equality) of the graph elements 
(characteristics) I]~ do not obey requirement (1) formulated in the foregoing text. 
As can be seen, for example, for graph 3, all IFTI (G - F )  values are larger than 
those of the whole graph G. Also, I~;HR.IFTI (F3)  = I~!:Ha (G). etc. Thus, any of 
the information theoretic indices 111!~, Iz~,, E t" • IOR~' ICHR' Ig' IE, etc.) based on .x 
equivalence relations of the distribution elements can be used as tragnrent topological 
indices. Instead, the graph characteristics partitioning used in specifying the Ii E indices 
can be treated in a different manner, e.g. by means of a quadratic function, as is done. 
for instance, t\/r the graph centric indices [27]. This, however, seems unreasonable, at 
least for some of these cases, since the centric, orbital, chromatic, etc. properties of 
graphs are radically changed upon the fragment excision. 

4.3. EXTEP, NAL FRAGMENT TOPOLOGICAL INDICES EFTI AND NEFTI. 
GENERAL REGULARITY ANALYSIS 

Here we trace how the examined external fragment indices follow the seniority 
relations occurring for the respective topological indices for the whole graph, as 
formulated by requirement (5). This requirement appears important because the 
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FTIs should reflect the fragment topology in the same manner as Tls do with the 
topology of the entire graph. An inspection of table 3 shows that with very :few 
exceptions this is actually the case. The same trend in reflecting the graph and frag- 
ment structural patterns is found for the tqosoya index Z, the Wiener index lf, the 
information index on the distance magnitude I~ I, and the Balaban index J. For 
example, 

Graphs 

5 2 6 7 3 8 

Z(G) 114 > 106 96 > 80 1205 < 1230 

Z . E F T I ( F )  91 > 83 74 > 58 1177 < 1202 
1149 < 1168 

Indeed, the comparison is made at a constancy of the structural factors: the 
fragment centric location, the (G - F )  branching and cyclicity, etc. For this reason, 
in the above examples we do not compare graphs 4 and 2 (or 5). since the first one 
is acyclic when the second one is a cyclic graph. One exception to this rule is detected 
for fragment 1 when comparing the tfOC index or the Randid index of graphs 3 and 8. 
These deviations are small and should not be regarded as evidence against the applica- 
bility of the two fragment topological indices. 

4.4. EFTI AND NI.iI:TI INDICES AND MOLECULAR BRANCHING 

By comparing EFTI (or NEFTI) indices for the graph series 5, 2, 6, 7, one 
could obtain some information on the degree to which these fragment topological 
indices reflect molecular branching as one of the major topological features of 
molecules. Molecular branching has been a subject of intensive graph-theoretical 
studies [ 2 - 1 4 , 1 7 , 1 8 , 2 8 - 3 3 ] .  An attempt was made to express the essence of 
branching by a series of structural rules based on the graph distances (the Wiener 
number W) [4]. Most of these rules are reflected also by the Randid molecular con- 
nectivity and the Hosoya non-adjacency index; the ordering of isomeric compounds 
they provide was shown to be followed by many molecular properties [4,33].  In 
dealing with isomeric structures 5, 2, 6 and 7, the different topological indices dis- 
agree as to which of graphs 2 and 6 is more branched. They do, however, indicate in 
full accord structure 5 as the least branched and structure 7 as the most branched. 
Thus, the ordering 5 > 6, 2 > 7 is produced by W, 1 X, and Z, anct the reverse order- 
ing 5 < 6, 2 < 7 results for I~) 1, J, ,J\i and M 1. Only some of the fragment indices 
follow this order. These are the EFTI and NEFTI for the Wiener number, the Hosoya 
index, and the HOC index. The Zagreb index M~, which is strongly degenerate, 
deviates from the expected ordering, showing the EFTI values of 5 and 6 to be the 
same, while the NEFTI values are even in a reversed order. The other three examined 
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EI::Tls completely disagree with tile ordering observed for the respective Tls, 
qualifying graph 6 as the least branched and graph 2 as the most branched one. 
The J.NEFTI and I~) t .NEFTI follow the same trend, some improvement being found 
only for ~x.NEI:::TI. where structure 7 is restored as the most branched one. 

Tile reason for tile failure of J-, I~ ~,-, and ~x-type fragment indices to reflect 
molecular branching correctly can be traced back to the luathematical functions used. 
X and ,I are sums of terms. The number of these terms diminishes by one for each 

edge which is cut during fragment excision. Tile opposite influence on tile magnitude 
of these indices, however, results from tile increasing values of all the remaining 
terms, due to the decrease of the vertex degrees or distance sunrs which constitute tile 
terlns denominator (see eqs. (14 )and  (25)). The regularity in varying molecular 
branching could thus be lost in the counterbalance of these two opposing trends. 
On tile other hand, l~ ~ I G't enhances with branching and so does Ii M .IFTI (F) ,  which 
is subtracted from IDM (G). Two opposing factors thus again emerge (the IFTI (G - F )  
term is constant) which may cause violations to tile regular trend dictated by molecular 

branching. 

43. I:.I:TI AND NI I:TI INDICI S AND THE IrP, AGMEN F CI NTP, IC LOCATION 

Another test for tile qualities of these fragment topological indices could be 
the comparison of their values in the case of different fragment locations in tile 
molecule. One may expect a regular change in EFTI and NEFTI values upon a con- 
secutive fragment removal from a more central position. With this purpose in mind, 
we compared fragmentations F1 F 3  of graph 2 and fragmentations F1 and F2 of 
graphs 3 and 8. 

The anticipated regular increase in both EFTI and NEFT1 indices was found 
for tile Hosoya, HOC, and Zagreb indices on removing the fragment from a marginal 
to central position, i.e. in the series F1 F 2  F3 for 2 or F1 F2 for 3 and 8. This 
increase is due mainly to the fact that a more central fragment is formed by breaking 
more bonds, creating more endpoints in the fragment(s). Tire other topological indices 
deviate more or less from the regular trend. Thus, one such deviation (underlined) 
is found for the Wiener index (f:2 F 1 - - F 3 ) a n d  its information-theoretic analog 
I~31 ( F 2 - F 1 ) ,  as well as for the Balaban index Y assuming a reverse fragment ordering 
i.e. a decrease with the fragment in a more central position (F2  ....................... F3,  F1 - F2). 
Once again, the Randid molecular connectivity index completely fails to reproduce 
tile expected regular t r e n d ( F 1 - E } _  [ ~ . , F 2  F [ ( G 3 ) , F 1  F2(G8)). 

. N e w  local  (ver tex)  graph invariants" all inf in i ty  o f  new vertex  

invariants based on  E F T I  

When considering a fragment of one non-hydrogen atom, the EFTI(1) value 
reduces to 
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EFTI(1) = TI (G) - IFTI (G' )  - a: (26) 

where G' is the vertex-excised graph, i.e. the initial graph from which the given 
vertex and its adjacent edges have been removed, a stands for 1FTI ( F )  and is zero 
in the majority of  cases or is a constant (e.g. a = 1 for the Hosoya index Z).  

If one now moves the one-atom fragment along the graph, one obtains for 
each vertex an EFTI(1)  value which is a vertex invariant based on the given TI. We 
illustrate this by the I,F.EFTI(1) and M I .EFTI(1)  values for the smallest identity 
tree on seven vertices. It is evident that these values vary consistently towards the 
graph center. 

27 36 1~ 10 12 za'  4 
18c~ y "13 e 

~S 
W. EI:TI (1) M 1 . I:,VF1 (l) 

On applying to the newly obtained vertex invariants iteratively the formula for 
the same TI or for a different TI, and then on recalculating EFTI(1)  for each vertex, 
it is possible to devise an infinite number of vertex invariants. More details on this 
subject will be given elsewhere [34]. 

6. Conclusions 

We have presented a new method for calculating topological indices of 
molecular fragments which takes into account the topological interaction between 
the fragment and the remainder of the molecule by the EFTI values. Whenever these 
interactions are unimportant,  only the internal fragment topological index fiFTH 
should be considered; such an index is calculated according to the usual methods 
employed for obtaining Tls of  whole molecules. Of course, the corresponding NIFTI 
reflects the relative weight of  the fragment in the molecule, a useful fact in QSAR. 
When, however, one wishes to emphasize the mode of  attachment of  the fragment, 
one may also have recourse to graph-theoretical methods based on rooted graphs. 

Some of  the selected TIs are well suited [or applications as fragment Tls, 
having a regular variation with respect to structural changes such as branching, central 
versus marginal location of  the fragment, etc. These are the simpler Tls, such as 
Z, .J~; W, or M 1 . Other TIs, such as I ~  or J, respond only partly in a regular manner 
to structural changes, while the Randid connectivity index ~X perhaps needs to be re- 
normalized so as to become widely applicable as a fragment topological index. How- 
ever, depending on the experimental data to be correlated with the structure, even 
"irregularly" varying indices may be tested. 
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In practice, most correlations do not involve hydrocarbons ,  but molecules 

containing heteroatoms.  In this case, one must parametrize graph consti tuents such 

as vertices or edges, and one must employ  weighted (labelled) graphs. Several papers 

have described approaches to this end [9 ,26 ,35] .  

For fragments consisting o f  one non-hydrogen a tom (Hal, NH2, OH, etc.) most  

internal FTIs are zero, leading to non-trivial difficulties. However,  EFTI ( F ) v a l u e s  

differ from zero even for such fragments.  Consequently,  such EFTI values can some 

times be used as local characteristics of  molecules (local vertex invariants). 

Acknowledgement 

This s tudy was supported by the Bulgarian State Commit tee  for Science 
(Grant No. 233). 

References 

[1] H. Wiener, J. Amer. Chem. Soc. 69(1947)17, 2636; J. Chem. Phys. 15(1947)766; J. Phys. 
Chem. 52(1948)425, 1082. 

[2] H. Hosoya, Bull. Chem. Soc. Japan 44(1971)2332. 
[3] M. Randid, J. Amer. Chem. Soc. 97(1975)6609. 
[4] D. Bonchev and N. Trinajstid, J. Chem. Phys. 67(1977)4517; Int. J. Quant. Chem. Quant. 

Chem. Syrup. 12(1978)293; ibid. 16(1982)463; 
D. Bonchev, O. Mekenyan and N. Trinajstid, J. Comput. Chem. 2(1981)127. 

[51 A.T. Balaban, Chem. Phys. Lett. 89(1982)399. 
[61 M. Randid, J. Chem. Inf. Comp. Sci. 24(1984)164. 
[7] A.T. Balaban, A. Chiriac, I. Motoc and Z. Simon, Steric Fit #l QSAR, Lecture Notes in 

Chemistry 15 (Springer-Verlag, Berlin, 1980) ch. 2, p. 22. 
[81 D.H. Rouvray, Sci. Amer. 254(1986)40; Amer. Sci. 61(1973)729; MATCH 1(1975)125; 

in: Mathematical and Computational Concepts in Chemistr3,, ed. N. Trinajstid (Horwood, 
Chichester, 1986) p. 295; i. Comput. Chem. 8(1987)470. 

[91 L.B. Kier and L.H. Hall, Molecular Connectivi~, in Chendsto., and Drug Research (Academic 
Press, New York, 1976). 

[10] N. Trinajstid, Chemical Graph Theo~,Vol. 2 (CRC Press, Boca Raton, 1983) ch. 4, p. 105. 
[ 11 ] D. Bonchev, Information Theoretic Indices /'or Characterization of Chemical Structures 

(Research Studies Press, Chichester, 1983). 
[12] A. Sabljid and N. Trinajsti¢~, Acta Pharm. Jugosl. 31(1982)189. 
[13] A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Top. Curr. Chem. 114(1983)21. 
[14] A.T. Balaban, Pure Appl. Chem. 55(1983)199; Theor. Chim. Acta 53(1979)355. 
[15] A.T. Balaban and P. Filip, MATCH 16(1984)163. 
[16] D. Bonchev, O. Mekenyan and H. Fritsche, Cryst. Growth 49(1980)90. 
[17] I. Gutman, M. Ru~i¢3, N. Trinajstid and C.F. Wilcox, Jr., J. Chem. Plays. 62(1975)3399. 
[18] M. Gordon and G.R. Scantlebury, Trans. Faraday Soc. 60(1964)605. 
[191 A.T. Balaban, Theor. China. Acta 53(1979)355. 
[201 L.B. Kier, L.H. Hall, W.J. Murray and M. Randid, J. Pharm. Sci. 64(1975)1971. 
[21] L.B. Kier, W.J. Murray, M. RandiE and L.H. Hall, J. Pharm. Sci. 65(1976)1226. 



O. Mekenyan et al., Topological indices for molecular fragments 375 

[22] J.R. Platt, J. Chem. Phys. 15(1947)419; J. Phys. Chem. 56(1952)328. 
[23] O. Mekeny~m, D. Bonchev and A.T. Balaban, J. Comput. Chem. 5(1984)629. 
[24] R.M. Muirhead, Proc. Edinburgh Math. Soc. 19(1901)36; 21(1903)144; 24(1906)45. 
[251 A.T. Balaban and E.V. Quintas, MATCH 14(1983)213; 

A.T. Balaban, N. Jonescu Pallas and T.-S. Balaban, ibid. 17(1985)121. 
[26] A.T. Balaban, MATCH 21(1986)115. 
[27] D. Bonchev, A.T. Balaban and O. Mekenyan, J. Chem. Inf. Comput. Sci. 20(1980)106. 
[281 L. Lovdsz and J. Pelikan, Period. Math. Hung. 3(1973)175. 
[29] I. Gutman and M. Randi~, Chem. Phys. Lett. 47(1977)15. 
[301 D. Bonchev, J.V. Knop and N. Trinajstic, MATCH 6(1979)21. 
[31] M. Barysz, J.V. Knop, S. Pejakovid and N. Trinajstid, Polish J. Chem. 59(1985)405. 
[32] R.E. Merrifield and tt.E. Simmons, Proc. Natl. Acad. USA 78(1981)1329. 
[33] D. Bonchev and O. Mekenyan, J. Chem. Soc. Trans. Faraday II 80(1984)695. 
[34] A.T. Balaban, D. Bonchev and O. Mekenyan (to be published). 
[351 M. Barysz, G. Jashari, R.S. Lall, V.K. Srivastava and N. Trinajstid, in: ChemicalApplicafions 

of Graph Theory and Topolog):', ed. R.B. King (Elsevier, Amsterdam, 1983) p. 222. 


